Formal Verification of a Merge-Sort Program

with Static Semantics

Paul E. Black
National Institute of Standards
and Technology (NIST)
paul.black@nist.gov

Abstract

Proving correctness of programs is a desirable, but not
yet practically solved, problem. Conventional verification
techniques do not scale to larger “real-life” programs.
In order to overcome problems with the semantics of
conventional languages, researchers define subsets of these
languages for verification. We take this approach one step
further; rather than defining a subset, we apply a new theory
based on relaxed single-threading to achieve completely
static semantics (i.e. referential transparency) of programs.
Our programs with static semantics have complete control
over aliasing, the correct order dependencies are enforced,
and uninitialized variables are prevented.

Due to the static semantics of these programs, first-order
logic can be used directly to verify them. Using Merge-Sort
as an example, we demonstrate that first-order logic proofs
of programs with static semantics are fully composable and
thus scale freely to larger programs. We also report on our
work towards a fully formal, machine-checked proof. This
work is one more step towards facilitating the design of more
easily verified programs.

1 Introduction

The desirability of proving programs correct with
respect to their specifications has been suggested many
times [Dij, Flo, Gri, Hol, Ho2, Man, McM, BW].
However, program proving appears to be a very costly
and difficult exercise [MLP]. A variety of principles
of program proving, or verification, have been applied
successfully to some small programs [Ho2]. The
applicability of program verification to larger, “real-life”
programs has been disputed [MLP].

One of the main difficulties in applying the known
techniques of program verification is the combinatorial
complexity of large proofs. Due to the lack of

* Supported in part by NSF Grant CCR-9404338.

George Becker*
Department of Computer Science
University at Albany - SUNY
becker@cs.albany.edu

Neil V. Murray*

Department of Computer Science
University at Albany - SUNY

nvm@cs.albany.edu

composability of these techniques, they do not scale
to larger, “real-life” programs. Using first-order logic
instead facilitates program verification. This is much
easier for programs with static semantics.

Formal verification can become practical and success-
ful in having a significant impact on practice if veri-
fication is more tractable, more productive, and cost-
effective. Due to problems with semantics of conven-
tional programming languages, researchers in formal
verification define subsets of those languages. For exam-
ple, the Penelope system [EHH] developed by Odyssey
Research Associates, Inc. uses a subset of Ada. Their
intent is to verify, by static semantic checks, that pro-
grams are free from improper aliasing, undisciplined side
effects, incorrect order dependencies, and uses of unini-
tialized variables.

We take such approaches one step further. Rather
than defining a subset of a conventional language, we
adopt the single-assignment style to achieve static se-
mantics (i.e., referential transparency) of our programs.
Our use of single-assignment is in the declarative sense
of functional programming, that is as a definition, rather
than in the operational sense of imperative program-
ming as a side effect. Programs with these static seman-
tics have complete control over aliasing, correct order
dependencies are enforced, and uninitialized variables
are prevented. Most importantly, due to the static se-
mantics, first-order logic can be used directly to verify
programs, thus avoiding difficult verification techniques
based on temporal first-order logics [MP] or Floyd-
Hoare axiomatization [Flo, Hol]. Since we are able to
use a few predefined higher-order functions rather than
recursion in our programs, we can apply mathematical
induction. Due to the full compositionality of programs
with static semantics, our approach can freely scale to
larger programs.

Section 2 discusses theoretical foundations of our
work. Section 3 presents our Merge-Sort program
consisting of four function definitions. Section 4 then
gives the proof of program correctness. We report
our progress toward a machine proof in Section 5 and
discuss extensions, implications, and future work in

Section 6. Appendix A lists standard operators and
functions we use, and Appendix B formally defines
program primitives.

2 Theoretical Basis

We developed an underlying theory [BM] that makes
it possible to achieve a completely static semantics.
Our approach is motivated by single-threading (i.e. us-
ing a value only once) of aggregate data (e.g., arrays,
lists, trees, tuples). Linear LISP [Bak| makes single-
threading explicit at the programmer’s level. This ap-
proach restricts a functional programming language so
that only singly-threaded programs can be ezpressed.
However, rigid enforcement of single-threading is a se-
vere constraint on the expressiveness of a programming
language, and thus appears to be self-defeating.

We relax single-threading to restore expressive-
ness [BM] while still being able to benefit from the lim-
ited single-threading that remains. The central idea is
to divide function input arguments into two categories
called inert inputs and active inputs. This distinction
is crucial because aggregate data arguments are passed
by reference for efficiency. Inert inputs are used for
(aggregate) data not subject to updating; e.g., when
evaluating the length of a list or computing the sum of
a vector of numbers. Such operations require no copy-
ing of data. Active inputs are used for aggregate data
subject to updating in a given operation.

Our relaxed single-threading has two aspects. First,
our structured function composition defines legal uses
of inert and active inputs when composing functions.
Second, our memory azioms stipulate how predefined
primitive functions must be implemented. We have
shown [BM] that evaluation of any structured function
composition of primitive functions is free of aliasing, i.e.
single-threading is preserved. Thus static semantics,
also known as referential transparency, is achieved
despite in-place updating of active input data.

3 Merge-Sort Program

We illustrate our approach on a Merge-Sort program for
lists of (real) numbers. The program applies to any type
of element as long as elements are comparable.

Inert and active inputs can be distinguished by either
a separator (the bar character in [BM]) or by suitable
annotations (keywords). Since annotations of inert
and active inputs do not change the semantics of the
program, they have no effect on the program proof.
Since this paper concentrates on verification, we omit
these annotations in our Merge-Sort program. The
annotations are only needed for compilers to determine
legal programs and to translate programs correctly. The
various “utility” functions used in the program are
formally defined in the Appendix B.

The program’s top-level function, merge _sort, first
converts the input data into a list of singleton lists.
Since each singleton list has only one element, they are
trivially sorted. The core of merge_sort is repeatedly
applying the function msort_step. The function
msort_step sorts and merges the list of many singleton
lists into a list of one sorted list containing all the input
elements. The function flatten gives the result as a
simple list.

Function msort_step splits its list-of-lists argument
into two halves, then merges each list from the first
half with a (corresponding) list from the second half.
Successive applications of msort_step combine “inner
lists,” keeping each inner list sorted, which shortens the
“outer list.” Eventually the outer list has just one list:
a sorted inner list with all the original elements.

Function ord merge just merges its two list argu-
ments. Since we keep the two argument lists sorted,
the resulting list is sorted as well. Function merge_step
is an auxiliary function that performs one step of the
ordered list merge by choosing the smaller element of
two lists. The chosen element is then transferred to the
list holding the intermediate result of merging.

function merge_sort(list(real) A):
int B = ceiling(log2(max(size(4),1))),
list(list(real)) C = explode_list(4),
list(list(real)) Y = iter(B,msort_step,C),
list(real) Z = flatten(Y),
result (Z).

function msort_step(list(list(real)) C):
(list(list(real)) D, list(list(real)) E)
= split_list(C),
list(list(real)) X
= map2_fill(ord_merge,D,E),
result (X).

function ord_merge(list(real) D,
list(real) E):
int F = size(D) + size(E),
(list(real) U, list(real) V, list(real) W)
= iter(F,merge_step,D,E,empty_list),
result (W).

function merge_step(list(real) D,
list(real) E, list(real) G):
bool H = size(D)==0 or first_greater(D,E),
(list(real) P, list(real) Q)
= swap_if(H,D,E),
(list(real) R, list(real) S)
= headlist_tail(P),
list(real) T = concat(G,R),
result (Q,S,T).

4 Proof of Program Correctness

We prove the correctness of this program by proving
four theorems. Each theorem specifies the properties
of one of the functions in the program. Our proof is a
brief sketch with many details left out because of length.
Appendix B defines two predicates (sorted, permut)
and three functions (concat, concat3, flatten)that
we also use in the proof. The term permut(A, B) means
that A is a permutation of B. Appendix B also defines
sequence comparison (e.g., list comparison) which we
denote by <.

4.1 Function merge_step

First, we give the necessary precondition (1) for this
function:

sorted(D) A sorted(E) A sorted(G)
A (1)
(G < D)A (G E)

Now, we give the desired postcondition (2) for the
results of applying function merge_step:

sorted (@) A sorted(S) A sorted(T") \
A
(T2Q)A (T =)
A 2
permut(concat3(@, S, T), concat3(D, E, G)) (2)
A
(size(Q) + size(S) =
max(0, size(D) + size(E) — 1))

7/

Theorem 1 If function merge_step is applied to argu-
ments satisfying precondition (1), then the function re-
sults satisfy postcondition (2).

Proof: Assume that the precondition (1) holds. The
value of variable H is true, if and only if either list D
is empty or lists D and F are both non-empty and the
first element of list D is greater than the first element
of list . Otherwise, the value of H is false. For all of
these cases, the following condition (3) holds:

sorted(P) A sorted(Q)

A
(size(P) = 0 vsize(Q) =0
v min(P) < min(Q)) (3)
A

permut(concat(P, @), concat(D, E))

We note that P and @ are sorted. If P and @ are
also non-empty, then the first element of P is equal to
min(P), and the first element of Q is equal to min(Q).
Since the first element of P is less than or equal to
the first element of @, min(P) < min(Q). We use
the condition min(P) < min(Q) since it is better for
carrying out the proof.

From the precondition (1) and from properties of
function headlist_tail, we obtain the following for-

mula (4) for lists R and Q:

(size(R) = min(1, size(P)))
A
sorted(R) A sorted(S)A(R=< Q)A (R =X S) (4)
A
permut(concat(R, S), P)

From (1), (3), (4) and properties of function concat, we
get the formula (5) for list T*

sorted(T') A permut(T, concat(G, R)) (5)

The postcondition (2) for function merge_step can be

obtained from (1), (3), (4) and (5).

4.2 Function ord _merge

We formulate the necessary precondition (6) for this
function:

sorted (D) A sorted (E) (6)

We give the desired postcondition (7) for the results of
applying function ord_merge:

sorted(W) A permut(W, concat(D, E)) (7

Theorem 2 If function ord_merge is applied to argu-
ments satisfying precondition (6), then the function re-
sults satisfy postcondition (7).

Proof: Assume that the precondition (6) holds. We
proceed by induction on F', the number of applications
of function merge_step. We define predicate Pr1(F) as
follows:

Pr1(F) = sorted(U) A sorted(V) A sorted(W) A
(WUA(W SV)A
permut(concat3(U, V, W), concat(D, E)) A
(size(U) + size(V)

= max(0, size(D) + size(E) — F))

Base Case: Let F = 0. Then U = D, V = F, and
W = empty list, and so Pr1(0) holds.

Ind. Step: Assume that Pr1(F) holds for some non-
negative integer. We get for F + 1:

iter(F + 1, merge.step, D, E, empty list)

= merge._step(iter(F, merge step, D, E, empty list))
From the induction hypothesis Prl(F), the precon-
dition (6) for the (F+1)-th application of function

merge_step is satisfied. Thus we can apply Theo-
rem 1. The permutation clause of Pr1(F + 1) results

from Pr1(F), Theorem 1 and transitivity of permuta-
tion. As each application of function merge_step de-
creases size(U) + size(V') by one (unless already zero),
the last clause in Pr1(F + 1) also holds. O

As we have F = size(D) + size(E), we obtain:

size(U) + size(V)
= max(0,size(D) + size(E) — F) (8)
= max(0,F—F)=0

From predicate Pr1(F) and (8), we get:

permut(W, concat(D, E)) (9)

The postcondition (7) for function ord_merge follows
immediately from predicate Pr1(F) (i.e. sorted(W)) and

(9).

4.3 Function msort_step

We formulate the necessary precondition (10) for this
function:

Vi<i<size(c) % : sorted(c;) (10)

We give the necessary postcondition (11) for the results
of applying function msort_step:

(size(X) = [size(C)/2])
A
(Yi<i<size(x) © : sorted(z;)) (11)
A
permut(flatten(X), flatten(C))

Theorem 3 If function msort_step is applied to argu-
ments satisfying precondition (10), then the function re-
sults satisfy postcondition (11).

Proof: Assume that the precondition (10) holds.
From this precondition and properties of function
split_list, we get:

(size(D) = [size(C)/2])
A
(size(E) = [size(C)/2])
A
Vi<i<size(D) % : sorted(d;
(Vi<j<size(E) J : sorted(e;))
A
permut(flatten(C),
concat(flatten(D), flatten(E))

From (12), properties of function map2_£ill and The-
orem 2, we obtain:

(size(X) = [size(C)/2]))
A
(v1§i<size(X) i sorted(mi))
A
(Yi<j<size(x) J : Permut(z;, concat(d;, e;)) (13)
A
if odd(size(C))
then permUt(msize(X): dsize(D))
else permut(Zsize(x),
concat(dsize(p), Csize(E))))

The size(C) is either odd or even. In both cases, the
postcondition (11) follows from (13) and (12).

4.4 Function merge sort
Precondition: None

We formulate the desired postcondition (14) for the
results of applying function merge_sort:

permut(Z, A) A sorted(Z) (14)

Theorem 4 Applying the function merge sort satisfies
the postcondition (14).

Proof: From properties of function explode_list, we
obtain:

(size(C) = size(A))
A
(Vi<i<size(c) % : sorted(c;)) (15)
A
permut(flatten(C), 4)

We continue by induction on B, the number of appli-
cations of function msort_step. We define Pr2(B) as
follows:

Pr2(B) = (Yi<j<size(y) J : sorted(y;)) A
permut(flatten(Y’), flatten(C)) A
(size(Y) < max(l, 2|'10g2(max(size(A),1)'| —B))

Base Case: Let B = 0. Then Y = A, and so Pr2(0)
holds.

Ind. Step: Assume Pr2(B) holds for some non-
negative integer. We get for B + 1:

iter(B + 1, msort.step, C)
= msort_step(iter(B, msort_step, C))

From the induction hypothesis Pr2(B), the precon-
dition (10) for the (B+1)-th application of function
msort_step is satisfied. Thus we can apply Theorem 3.
The permutation clause of Pr2(B + 1) results from
Pr2(B), Theorem 3 and transitivity of permutation.
As each application of function msort_step decreases

the upper bound of log,(max(size(Y), 1)) by one (un-
less size(Y) < 1 already), the last clause of Pr2(B + 1)
also holds. O

As we have B = [log,(max(size(4),1))], size(Y) <
max(1,2# *0) = 1. Since the elements of Y are sorted,
size(Y') < 1 means that sorted(flatten(Y")) is true.

We further obtain from Pr2(B) and (15):

permut(flatten(Y"), flatten(C))
A (16)
permut(flatten(C), 4)

From (16) and from the facts that sorted(flatten(Y’))
is trivially true and Z = flatten(Y), we obtain
the postcondition (14) for the function merge_sort.
Naturally, size(Z) = size(A) is also true.

5 Machine Proofs Efforts

To be practical for more and larger programs, proofs
of correctness must be at least partially automated.
To this end we are working on fully formal, machine-
checked proofs in HOL [GM] and PVS [ORS]. To prove
correctness we need three formally defined components:
a specification, an implementation model, and rules of
inference [BHJ+].

We formalize the preconditions and postconditions
from Section 4 as the specifications. We translate the
program from Section 3 into functional descriptions in
the built-in first-order logics as the implementation.
(This is a “shallow” embedding.) Our models refer
to sorting natural numbers (non-negative integers),
instead of real numbers, since they are a “native type”
and thus a little easier to reason about. We use the
standard, built-in rules of logic, math, and function
composition for rules of inference.

With the specification and a model of the implemen-
tation described formally, the “theorem provers” check
that each step of the proof is correct. Although HOL
and PVS prove some of the simplest steps automati-
cally, the fully formal proof is still many times more
complex than the proofs in this paper. For instance,
obvious and technical lemmas such as (sorted(G) AVy €
G : z > y) = sorted(append(G, z)) must be proved in
great detail.

Our work so far in formalizing and proving the
specifications and program found some typographical
errors which had escaped earlier manual checking.

6 Discussion

The purpose of our Merge-Sort program is to provide
a good illustration of our proof method on a familiar
algorithm. Even though actual applications of the
Merge-Sort algorithm tend to operate on external data
(e.g., magnetic tapes), for purposes of illustration, this
Merge-Sort program operates on internal data. We

chose to represent sequences as lists, since lists are more
natural and better suited for expression of the Merge-
Sort algorithm. Unlike a Merge-Sort algorithm coded in
conventional sequential languages (e.g., Pascal, Modula-
2, Ada, C/C++, etc.), our Merge-Sort is, in principle,
a parallel program. In particular, the higher order
function map2 £ill can be viewed as a data-parallel
construct.

Our Merge-Sort program uses higher order functions
and is nonrecursive. Its call-graph is a (rooted) tree.
We carry out its proof by simple induction. The
“loop invariants” of conventional proofs are captured
by our induction predicates. The proof proceeds in
a “bottom-up” fashion from leaves of the call-graph
tree towards its root. Naturally, when proving that
a function corresponding to an interior node of the
call-graph tree, we use intermediate proof results from
children of the interior node. Other than that, however,
proofs of individual functions making up a program are
independent of each other. Consequently, our proofs are
composable and thus can scale to larger programs.

Conventional proof methods show total correciness
by establishing partial correctness of a program and
separately proving program termination. Our method
shows correctness entirely by proving that an input-
output transformation of a program satisfies the given
specification. If the input-output transformation is a
total function, the termination of a program follows.
In the case of our Merge-Sort program, there is
no possibility of non-termination since no construct
in our program admits infinite iteration. Formally
speaking, the input-output transformation of Merge-
Sort is primitive recursive, and thus total.

The classical proof of Find, which performs partial
sorting, is described in Sections 2, 3, and 4 of [Ho2],
and includes the following reservation in Section 5:

In the proof of Find, one very important aspect
of correctness has not been treated, namely, that
the program merely rearranges the elements of
the array A, without changing their values.

The proof of our Merge-Sort program shows directly
that the output is a permutation (i.e. rearrangement)
of the input. Currently, we are considering proving
the program Find [Ho2] by our method. In the future,
we wish to further demonstrate compositionality of our
method. Since compositionality is a necessary condition
for scalability and thus for the success of any verification
technique, we plan to show scalability by verifying larger
programs, including a simple text analyzer (histogram
generator) and a maximum network flow program.

Acknowledgments

We express our sincere thanks to Richard E. Stearns
and S. S. Ravi for helpful discussions on this paper. We

thank Trent N. Larson and William Majurski for their
work on the machine proof.

References

[Bak] Henry G. Baker. A ‘Linear Logic’ Quicksort.
In ACM Sigplan Notices, Feb 1994.

[BM] George Becker and Neil V. Murray. Efficient
execution of programs with static semantics.
In ACM Sigplan Notices, April 1995.

[BMS] George Becker, Neil V. Murray, and Richard
E. Stearns. Refined single-threading for par-
allel functional programming. In Languages,
Compilers and Run-Time Systems for Scal-
able Computers (Eds.: Boleslaw K. Szyman-
ski and Balaram Sinharoy), Kluwer Academic

Publishers, 1996.

[BHJ+] Paul E. Black, Kelly M. Hall, Michael D.
Jones, Trent N. Larson, and Phillip J. Wind-
ley. A brief introduction to formal methods.
In Proc. of CICC ’96, pages 377-380, 1996.

[BW] Paul E. Black and Phillip J. Windley. Formal
verification of secure programs in the presence
of side effects. In Proc. of HICSS-31, vol. III,
pages 327-334, 1998.

[Dij] Edsger W. Dijkstra. A Discipline of Program-
ming. Englewood Cliffs/Prentice-Hall, 1976.

Carl T. Eichenlaub, C. Douglas Harper and
Geoffrey Hird. Using Penelope to Asses
the Correctness of NASA Ada Software: A
Demonstration of Formal Methods as a Coun-
terpart to Testing. NASA Contractor Report
4509, May 1993.

[Flo] Robert W. Floyd. Assigning meanings to
programs. In Proc. of Symposium in Applied
Mathematics, pages 19-32, 1967.

[GM] Michael J. C. Gordon and Tom F. Melham,
editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic.
Cambridge University Press, 1993.

[Gri] David Gries. The Science of Programming.
Springer-Verlag, 1981.

[Hol] C. A. R. Hoare.
computer programming. In Comm. of ACM,
12 (10), pages 576-583, 1969.

An axiomatic basis for

[Ho2] C. A. R. Hoare. Proof of a program FIND. In
Comm. of ACM, 14 (1), pages 39-45, 1971.

Zohar Manna. Mathematical Theory of Com-
putation. McGraw-Hill, 1974.

[Man]

[MP] Zohar Manna and Amir Pnueli. Temporal
Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

[McM] John McCarthy. Towards a mathematical
science of computation. In IFIP 62, pages 21—

29, Amsterdam. North-Holland, 1962

[MLP] Richard A. De Millo, Richard J. Lipton, and
Alan J. Perlis Social processes and proofs of
theorems and programs. In Comm. of ACM,

22 (5), pages 271-280, 1979.

[ORS] Sam Owre, John M. Rushby, and Natarajan
Shankar. PVS: a prototype verification system.
In 11th CADE, vol. 607 of Lecture Notes in

Artificial Intelligence, pages 748-752, 1992.

A Standard Operators and Functions

In our logical formulas and in the program, we use
standard arithmetic, relational and logical operators +,
— % [/, <, <, =, 7, A, V. In the program, we use
“or” for the logical operator Vv, as well as == for the
relational operator =. We also use the functions max,
min, ceiling ([z]), binary exponentiation (2%) and
binary logarithm (log,) with their standard meaning.
In our logical formulas (but not in the program),
the function min is not only a binary function but
is extended in the usual way to non-empty sequence
operands.

Except for the data being sorted, all other atomic
data types are either boolean or integer. In fact, both
the program and the proof require only natural num-
bers, not integers. Since we wish to avoid defining addi-
tional functions and complicating our logical formulas,
these formulas do contain a few occurrences of arith-
metic subexpressions that can evaluate to negative in-
tegers. Similarly, a few arithmetic subexpressions may
evaluate to real values. However, these subexpressions
occur only within integer expressions.

B Definitions of Primitive Functions
and Predicates

We use the following functions, as well as the predicates
odd, sorted, permut, and < (sequence comparison) in
our logical formulas and/or in the program.

Definition 1 Predicate odd:
odd(n) = =(Im € Nat : n =2 % m)

Let Q@ = q1, 92,93, ..., g be a finite sequence
(of, e.g., numbers).

Definition 2 Size (length or number of elements)
of a sequence Q:
size(Q) = { k if Q is non-empty

0 otherwise

Definition 3 Prefiz of length n of a sequence Q:
prefix(n, Q) = Q’', such that size(Q’) = min(n, size(Q))
and V1 i chine(qr) % = %

Definition 4 Suffiz of length n of a sequence Q:
suffix(n, Q) = Q’, such that size(Q’) = min(n, size(Q))
and vlSiSSiZC(Q’) q; = Qitsize(Q)—size(Q’)

Definition 5 Tail of a sequence:

tail(Q) = suffix(max(0, size(Q) — 1), Q)

Definition 6 Prepend an element g, to a sequence Q:
prepend(gp, Q@) = Q’', such that size(Q’) = size(Q) + 1,
g = gp, and Q = tail(Q’)

Definition 7 Sorted Property (in a non-decreasing
order) of a sequence Q:
sorted(Q) = v1§z'<size(Q) 1: q; S gi+1

Definition 8 Counting elements of sequence S having
given value v:
count(v, S) = El<i<size(5) (if s; = v then 1 else 0)

Definition 9 Sequence comparison:
Let S1 and Sy be sequences of comparable elements.
S§1 =X 82 =Vs; €51,50 € 52:51 <53

Definition 10 Minimum element value in ¢ sequence
(e.g., a list):

min(g1, min(tail(@))) if size(Q) > 1
min(Q) =< @1 if size(Q) = 1

undefined otherwise

Definition 11 Comparison of first elements of two
sequences R and S:
first_greater(Q@, S)

= (size(Q) > 0 Asize(S) > 0A g1 > s1)

Definition 12 Conditional swapping of two
arguments:
swap_if(Cond, z,y) = { y,2 if Cond

z,y otherwise

Definition 13 Concatenation of two sequences:
concat(@,R) = S

such that size(S) = size(Q) + size(R),

Q = prefix(size(Q), S), R = suffix(size(R), S).

Definition 14 Concatenation of three sequences:

concat3(Q1, @2, @3) = concat(Q1, concat(Q2, @3))

Definition 15 Permutation as a binary relation
on sequences:
Let Q and S be sequences of comparable elements.
permut(Q@, S)
= Ve € concat(@, S) : (count(e, Q@) = count(e, S))

Definition 16 Ezploding a sequence (e.g., a list) into
o sequence of singleton sequences:
explode_list(Q)
prepend(prefix(1, @),
= explode list(tail(Q))) if size(Q) >0

empty-sequence otherwise

Definition 17 Flattening (i.e. generalized concatena-
tion) of a sequence of sequences Y :
flatten(Y")
| concat(y:, flatten(tail(Y))) if size(Y) >0
- { empty-sequence otherwise

Definition 18 Splitting a sequence (e.g., a list):
split_list(@Q) = R, S

such that size(R) = [size(Q)/2], size(S) = |size(Q)/2],
end @ = concat(R, S).

Definition 19 Applying o given function to corre-
sponding elements of two sequences (e.g., lists):
map21ill(f, Q, R)
prepend (f(g1, 1),
map2 fill(f, tail(Q), tail(R)))

if size(Q@) > 0 Asize(R) > 0
prepend (g1, map2 fill(f, tail(@), R))

if size(Q@) > 0 Asize(R) =0
prepend(ry, map2 fill(f, @, tail(R)))

if size(@) = 0 Asize(R) > 0
empty-sequence otherwise

Definition 20 Headlist and tail of a sequence @:
headlist_tail(Q) = prefix(1, @), tail(Q)

Note that for an empty-sequence Q° (i.e. size(Q°) = 0),
headlist_tail(Q°) = Q°, Q°.

Consider a function f such that:
fi(Dix+++xDyxDjx:-+xD])— (Dyx---xD.)
Let 21 € Dy, ..., 2 € Di, y1 € Dll, vy Ym € Daln

Definition 21 Applying a function f n-times:
iter(n, f: L1y ooy Lhy Y1y ey ym)
f(zla ceey Ly
= iter(n — 1, f, 21, ..y o, Y1, -y Ym)) fn >0
Y1y ooy Ym ifn=0

